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ABSTRACT
Observations of surface magnetic fields of cool stars reveal a large diversity of configurations. Although there is now a consensus
that these fields are generated through dynamo processes occurring within the convective zone, the physical mechanism driving
such a variety of field topologies is still debated. This paper discusses the possible origins of dipole and multipole-dominated
morphologies using three-dimensional numerical simulations of stratified systems where the magnetic feedback on the fluid
motion is significant. Our main result is that dipolar solutions are found at Rossby numbers up to 0.4 in strongly stratified
simulations, where previous works suggested that only multipolar fields should exist. We argue that these simulations are
reminiscent of the outlier stars observed at Rossby numbers larger than 0.1, whose large-scale magnetic field is dominated by
their axisymmetric poloidal component. As suggested in previous Boussinesq calculations, the relative importance of inertial
over Lorentz forces is again controlling the dipolar to multipolar transition. Alternatively, we find that the ratio of kinetic to
magnetic energies can equally well capture the transition in the field morphology. We test the ability of this new proxy to
predict the magnetic morphology of a few M-dwarf stars whose internal structure matches that of our simulations and for which
homogeneous magnetic field characterization is available. Finally, the magnitude of the differential rotation obtained in our
simulations is compared to actual measurements reported in the literature for M-dwarfs. In our simulations, we find a clear
relationship between anti-solar differential rotation and the emergence of dipolar fields.
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1 INTRODUCTION

Over the last decade, spectropolarimetric observations coupled to
tomographic inversion techniques enabled the reconstruction of the
large-scale magnetic topology that stars host at their surfaces. Cool
stars with significant convective envelopes (with spectral types later
thanG0) revealed a large diversity ofmagneticmorphologies (Donati
et al. 2008; Morin et al. 2010; Folsom et al. 2016, 2018). Fully con-
vective stars typically are found to harbour strong poloidal fields with
a significant dipolar component, while partly convective stars host
more complex magnetic topologies, consisting of non-axisymmetric
multipolar poloidal fields and significant toroidal fields (Donati &
Landstreet 2009). Although there is now a consensus that the mag-
netism of cool stars are generated through dynamo processes occur-
ring within the outer convective zones (see Brun & Browning 2017,
for a recent review on the subject), the physical mechanism driving
such a variety of large-scale field topologies is still debated.
The fact that both rotation and convection play a major role in the

stellar dynamo process is, however, well established (see e.g. activity
proxy studies of Mangeney & Praderie 1984; Noyes et al. 1984;
Pizzolato et al. 2003; Wright et al. 2011, 2018). Their joint effect

★ E-mail: zaire@fisica.ufmg.br

on the magnetic field generation becomes obvious when considering
observational measurements of the large-scale fields of low-mass
stars as a function of the non-dimensional Rossby number (defined
as the ratio of inertial to Coriolis forces and traditionally computed
as 𝑅𝑜 = 𝑃rot/𝜏, where 𝜏 is the convective turnover time and 𝑃rot is
the rotation period of the star). The averaged surface field strength
〈𝐵〉 shows two clear trends with the Rossby number. For 𝑅𝑜 > 0.1,
spectropolarimetric observations show that the large-scale magnetic
field of cool stars weakens with increasing Rossby number (Vidotto
et al. 2014; Folsom et al. 2016). This parameter region is often
called "the unsaturated regime" and follows 〈𝐵〉 ∝ 𝑅𝑜−1.40±0.10

(See et al. 2019), where the toroidal component of the large-scale
field is reported to weaken faster than the poloidal component (Petit
et al. 2008; See et al. 2015). As the Rossby number decreases below
the 𝑅𝑜 ∼ 0.1 threshold, cool stars enter the "saturated regime" in
which the large-scale field strength is roughly constant (Donati et al.
2008).

The Rossby number has also proved to be quite successful at distin-
guishing various magnetic field morphologies in stellar observations
(Morin et al. 2010; Folsom et al. 2018). Stars with masses lower than
0.5M� and 𝑅𝑜 . 0.1 happen to have simple (dipole dominated)
surface magnetic fields, whereas most stars featuring more complex
surface fields tend to have larger Rossby numbers. Based on these
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2 B. Zaire et al.

observational results, it has been argued that stellar magnetic fields
increase in complexity for stars with higher Rossby numbers. How-
ever, counterexamples that include stars harbouring complex field
structures at low 𝑅𝑜 and others hosting dipole-dominated magnetic
morphologies at large 𝑅𝑜 (with Rossby numbers ranging from 0.2 to
0.3 – Donati et al. 2008; Folsom et al. 2016, 2018) question the idea
of magnetic fields getting more complex for stars with higher Rossby
numbers. These results indicate that although the Rossby number
may help at distinguishing between various generation mechanisms
for the stellar magnetic fields, other proxies need to be invoked to
clearly understand the transition between dipole-dominated andmore
complex field structures.
In the last two decades, numerical simulations mimicking the in-

terior of planets (and, to a lesser extent, stars) have focused on un-
derstanding the origins of the magnetic morphology produced by
convective dynamos. Parametric studies were conducted, using the
relative strength of the axial dipole as a topological diagnostic to char-
acterize the large-scale magnetic field. Geodynamo simulations with
a constant density across the convective zone (e.g., Christensen &
Aubert 2006; Olson & Christensen 2006; Sreenivasan & Jones 2006;
Soderlund et al. 2012) advocated that the Rossby number is indeed a
key factor regulating the magnetic morphology. These initial numer-
ical experiments suggested that dipole dominated morphologies only
occurwhen 𝑅𝑜 . 0.1 (commonly referred to as "the dipolar branch"),
while complex surface fields could exist at both low and high Rossby
numbers. Nevertheless, very recently Menu et al. (2020) and Tassin
et al. (2021) performed geodynamo simulations to explore the in-
fluence of the Lorentz force on the dipole breakdown. The authors
found that strong dipoles can be recovered at high-Rossby numbers
(up to 𝑅𝑜 = 0.18) provided that a significant Lorentz force is acting
on the fluid, challenging the canonical use of the Rossby number to
distinguish between dipolar and multipolar field geometries. They
suggested the ratio of inertial over Lorentz forces as an alternative
proxy to capture the dipolar-multipolar transition. We propose to test
this appealing hypothesis when the effect of a density contrast is
introduced in the system.
Similar to what was initially found in geodynamo studies, stel-

lar dynamo simulations showed a dipolar-multipolar transition with
the Rossby number when considering weak density contrasts (Gas-
tine et al. 2012; Jones 2014). However, these studies found that the
dipolar branch disappeared for increasing density contrast. The ap-
parent disagreement between the magnetic morphology observed in
stars and those obtained in simulations of stratified flows raised the
important question of why numerical experiments were apparently
preventing dipoles from existing when the density contrast is more
realistic (Petitdemange & Raynaud 2019). Further explorations of
stratified flows with different physical properties showed that dipoles
could be recovered at 𝑅𝑜 . 0.1 when modifying the relative impor-
tance of the forces acting on the flow (Schrinner et al. 2014; Raynaud
et al. 2015). To our knowledge, the simulation of Yadav et al. (2015)
with 𝑅𝑜 = 0.04 corresponds to the highest density contrast in which
dipolar dynamos are reported to date. The authors obtained a strong
dipole after considering a reduced influence of the inertial force by
adopting a high ratio of viscous to thermal diffusions in a simulation
with a density contrast of 𝑁𝜌 = ln 𝜌𝑖/𝜌𝑜 = 5 (where 𝜌𝑖 and 𝜌𝑜 are
the density at the bottom and top of the convective zone, respec-
tively). These various numerical experiments suggest that the dipole
collapse could be an artificial bias of the parameter space explored
with simulations. Thus, a close look at the force balance is needed to
assess if the chosen parameter regime is indeed relevant for stars.
In this work, we attempt at reproducing for the first time the dipole-

dominated field morphologies observed in some stars with 𝑅𝑜 >

0.1. To do so, we perform a systematic parametric study of 3D
convective dynamo simulations with different Rossby numbers and
density contrasts, both of which are important ingredients in the
stellar dynamo context. Guided by previous geodynamo studies, we
focus on regime where the Lorentz force is dynamically active on
the flow. The paper is organized as follows: we discuss our dynamo
model and the selected control parameters in Sec. 2. The magnetic
fieldmorphology obtained in our simulations is presented in Sec. 3.1,
while the physical mechanisms controlling it are explored in Sec. 3.2.
In Sec. 3.4.2, we examine more closely the magnetic field generation
in our simulations. Finally, we compare our results with previous
stellar and geodynamo simulations and explore their implications in
light of stellar observations in Sec. 4.

2 DYNAMO MODEL

2.1 Governing equations

Wemodel a stratified fluid in a spherical shell with inner radius 𝑟i and
outer radius 𝑟o that rotates with angular velocity Ω𝑜 about the axis
êz. We solve the non-dimensional magneto-hydrodynamics (MHD)
equations under the anelastic formulation of Braginsky & Roberts
(1995) and Lantz & Fan (1999), expressed by

𝐸

[
𝜕®u
𝜕𝑡

+ (®u · ∇)®u
]
+ 2ê𝑧 × ®u = −∇

(
𝑝′

𝜌̃

)
+ 𝑅𝑎𝐸

𝑃𝑟
𝑔𝑠′êr

+ 1
𝑃𝑚𝜌̃

(∇ × ®B) × ®B + 𝐸

𝜌̃
∇ · 𝑆,

(1)

𝜕 ®B
𝜕𝑡

= ∇ ×

(
®u × ®B

)
− 1

𝑃𝑚
∇ ×

(
∇ × ®B

)
, (2)

𝜌̃𝑇

[
𝜕𝑠′

𝜕𝑡
+ (®u · ∇)𝑠′ + 𝑢r

d𝑠
d𝑟

]
=
1
𝑃𝑟

∇ ·
(
𝜌̃𝑇∇𝑠′

)
+ 𝑃𝑟𝐷𝑖

𝑅𝑎
𝑄𝜈

+ 𝑃𝑟𝐷𝑖

𝑃𝑚2𝐸𝑅𝑎
(∇ × ®B)2,

(3)

∇ ·
(
𝜌̃®u

)
= 0, (4)

∇ · ®B = 0, (5)

where ®u is the velocity field, ®B is the magnetic field, 𝑆 represents the
strain-rate tensor given by

𝑆 =
𝜕

𝜕𝑥 𝑗

[
𝜌̃

(
𝜕𝑢𝑖

𝜕𝑥 𝑗
+
𝜕𝑢 𝑗

𝜕𝑥𝑖

)]
− 2
3

𝜕

𝜕𝑥𝑖

(
𝜌̃
𝜕𝑢 𝑗

𝜕𝑥 𝑗

)
,

and 𝑄𝜈 is the viscous heating expressed as

𝑄𝜈 = 𝜌̃

(
𝜕𝑢𝑖

𝜕𝑥 𝑗
+
𝜕𝑢 𝑗

𝜕𝑥𝑖
− 2
3
𝛿𝑖 𝑗∇ · ®u

)
𝜕𝑢𝑖

𝜕𝑥 𝑗
.

Pressure and entropy fluctuations (𝑝′ and 𝑠′, respectively) are de-
fined with respect to the reference state (see Subsec. 2.2). We adopt
a dimensionless formulation where the reference length scale is 𝑟o
and the time is given in units of 𝜏𝜈 = 𝑟2o/𝜈, where 𝜈 is the fluid vis-
cosity. The entropy scale is set to 𝑟o |d𝑠/d𝑟 |𝑟𝑜 , where |d𝑠/d𝑟 |𝑟𝑜 is the
normalized background entropy gradient at the outer boundary (see
Sec. 2.2). The magnetic field is given in units of

√︁
𝜌𝑜𝜇𝜆Ω𝑜, where

𝜇 is the magnetic permeability and 𝜆 is the magnetic diffusivity. The
gravity, density, and temperature are normalised by their outer radius
values given by 𝑔𝑜, 𝜌𝑜, and 𝑇𝑜, respectively.
The dimensionless control parameters that appear in the equations

above are the Ekman number (𝐸), Rayleigh number (𝑅𝑎), Prandtl
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number (𝑃𝑟), magnetic Prandtl number (𝑃𝑚), and dissipation num-
ber (𝐷𝑖). They are defined as

𝐸 =
𝜈

Ω𝑜𝑟
2
o
, 𝑅𝑎 =

𝑔𝑜𝑟
4
o

𝑐p𝜅𝜈

����d𝑠d𝑟 ����𝑟o , 𝑃𝑟 = 𝜈

𝜅
, 𝑃𝑚 =

𝜈

𝜆
, 𝐷𝑖 =

𝑔𝑜𝑟o
𝑐p𝑇𝑜

,

where 𝜅 is the thermal diffusivity and 𝑐p is the specific heat at
constant pressure. We note that in the anelastic formulation adopted
here, a non-adiabatic reference state is used. This translates into
the appearance of a non-zero background entropy gradient d𝑠d𝑟 in
the entropy equation (Eq. 3). The details of this reference state are
discussed below.

2.2 Reference state

Thermodynamical quantities in Eqs. 1 to 3 are expressed in terms
of a reference (static) state and fluctuations around it. We adopt as
reference state a nearly adiabatic ideal gas for which we prescribe
the background entropy gradient d𝑠d𝑟 . We then deduce the reference
temperature and density by solving the following equations:

1
𝑇

𝜕𝑇

𝜕𝑟
= 𝜖s
d𝑠
d𝑟

− 𝐷𝑖

𝑇o
𝑔(𝑟) (6)

and
1
𝜌̃

𝜕 𝜌̃

𝜕𝑟
= 𝜖s
d𝑠
d𝑟

− 𝐷𝑖𝑐v
(𝑐p − 𝑐v)𝑇o

𝑔(𝑟), (7)

where we set the control parameter 𝜖s = 10−4 � 1, which is a nec-
essary condition to ensure that we are still close to an adiabatic state.
This formulation with a prescribed non-adiabaticity d𝑠/d𝑟 allows us
to control the energy transport inside the star (notice its presence
in Eq. 3) and has been previously adopted in numerical models of
gas giant planets (Dietrich & Wicht 2018; Gastine & Wicht 2021).
The background entropy sets radiative regions whenever d𝑠/d𝑟 > 0,
while convectively-unstable regions occur when d𝑠/d𝑟 < 0.
In the present work, we simulate convective shells with 𝑟i/𝑟o = 0.6

and a fixed background entropy gradient d𝑠/d𝑟 = −1. We note that
this choice is motivated by the fact that the entropy gradient calcu-
lated from 1D stellar evolution models of Sun-like stars is indeed
approximately constant in the bulk of the convection zone (i.e., ex-
cluding the outer 5% of the star in radius), which is the region we
aim at modelling in this work. Our background entropy profile thus
differs from previous anelastic studies, like the ones presented in the
anelastic benchmark of Jones et al. (2011), where the reference state
entropy is the solution of a conduction equation on which conditions
of fixed entropy are applied. This leads to a solution with a gradi-
ent varying with radius, the maximal values of which being located
in the outer part of the spherical shell. In our case, the gradient is
constant throughout the shell, leading to a more homogeneous forc-
ing of convection. This difference is illustrated in Figure 1, where
the structure of the most unstable mode at the onset of convection
is shown for our present work (left) and for an adiabatic reference
state as used in Jones et al. (2009) (right) with the same values of
𝑁𝜌, 𝐸 and 𝑃𝑟. At onset, our forcing of convection results in unsta-
ble modes located close to the bottom boundary (see also Cuff &
Heimpel 2018, for similar results with an adiabatic reference state
but different boundary conditions). When the Rayleigh number is in-
creased however, strong convective velocities build close to the outer
shell, as expected in stratified systems. To be more specific, we now
give in Table 1 the values of the critical Rayleigh number and the
critical azimuthal wavenumber in our setup, determined numerically
at the different density contrasts used in our simulations and for the

Figure 1. Structure of the most unstable mode for convection forced through
our background entropy profile (left) and through a more traditional entropy
profile (right) for a density contrast 𝑁𝜌 = 3. Represented on the figure is an
equatorial cut of the radial velocity close to the onset of convection at the
values of 𝐸 = 1.6 × 10−5 and 𝑃𝑟 = 1.

Table 1.Critical Rayleigh numbers and azimuthal wavenumbers for our setup,
for the three different density contrasts used in our simulations. These numbers
are determined without taking into account the presence of a magnetic field.

𝑁𝜌 Rac 𝑚𝑐

1 1.92 × 107 32
1.5 2.40 × 107 37
3 3.56 × 107 39

values of 𝐸 and 𝑃𝑟 adopted in all our calculations and which are
specified in the next Subsection 2.4.
We adopt a physically-motivated gravity based on the reference

state of a main-sequence cool star that reads

𝑔(𝑟) = −7.36 𝑟
𝑟o

+ 4.99 𝑟
2

𝑟2o
+ 3.71 𝑟o

𝑟
−
0.34 𝑟2o

𝑟2
. (8)

For the radial domain explored in this paper (with radius ratio
𝑟i/𝑟o = 0.6), this gravity profile is virtually identical to the point
mass approximation used in many parametric studies investigating
dynamo action in planets and stars. We expect thus that any differ-
ences between our simulations and other similar ones in the literature
with 𝑟i/𝑟o = 0.6 are most likely caused by differences in the back-
ground entropy profile or control parameters (see Sec. 2.4) rather
than in the gravity profile.

2.3 Numerical model and boundary conditions

We use the anelastic version of the open-source code MagIC (Gas-
tine & Wicht 2012, freely available at https://github.com/
magic-sph/magic) to solve Eqs. 1 to 5 in spherical coordinates.
MagIC has been validated through several anelastic benchmarks
(Jones et al. 2011). To evolve the Eqs. 1-3 in time a mixed algo-
rithm is adopted, where linear terms (except for the Coriolis one) are
treated implicitly and non-linear terms are handled explicitly. Spher-
ical harmonics are used as basis functions of the angular coordinates
(𝜃, 𝜙) and are handled using the SHTns library (Schaeffer 2013,
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freely available at https://bitbucket.org/nschaeff/shtns).
These functions are truncated at a maximum degree ℓmax, sufficient
to capture physical processes at play (typically ranging from 213
to 341 in our simulations). Chebyshev polynomials are used in the
radial direction along with the mapping proposed by Kosloff & Tal-
Ezer (1993), which alleviates the grid refinement created near inner
and outer boundaries in the standard formulation of the Chebyshev-
collocation points. We refer to Gastine &Wicht (2021) for additional
details of this implementation in MagIC.
In the full set of simulations, we adopt stress-free boundary con-

ditions on the velocity field,

𝑢𝑟 =
𝜕

𝜕𝑟

( 𝑢𝜃
𝑟

)
=

𝜕

𝜕𝑟

( 𝑢𝜙
𝑟

)
= 0 on 𝑟 = 𝑟i and 𝑟 = 𝑟o, (9)

potential field boundaries on the magnetic field,

®J = ∇ × ®B = 0 on 𝑟 = 𝑟i and 𝑟 = 𝑟o, (10)

and fixed entropy values, set to 0, at both boundaries. We initialize
the velocity field with a small-amplitude random perturbation. The
initial magnetic field is set to a dipole of strength Λ = 0.44 at the
bottom of the convective zone (i.e., at 𝑟 = 𝑟i), where Λ =

〈
𝐵2

〉
is the

Elsasser number expressed in terms of the dimensionless magnetic
field.

2.4 Choice of parameters

In order to perform stellar dynamo simulations, a crucial ingredient
to take into account is the density stratification. In themain-sequence,
cool stars show a density contrast between the bottom (𝜌𝑖) and the
top (𝜌𝑜) of the convective zone that can reach 𝑁𝜌 ∼ 11 (according to
models generatedwith theATONcode, Landin et al. 2006). However,
density contrasts as high as those seen in stars cannot be attained by
numerical simulations as it drives fast small-scale motions that are
too computationally demanding. In order to bypass this limitation,
some authors chose to exclude from the numerical domain the outer
few per cent of the stellar radii where the sharpest density gradients
exist (Dobler et al. 2006; Browning 2008; Brown et al. 2011; Zaire
et al. 2016; Emeriau-Viard & Brun 2017; Guerrero et al. 2019). We
here also exclude this sharp gradient region from our domain and
study the effect of varying 𝑁𝜌 from 1 to 3 to assess the influence of
an increase of the density contrast on the magnetic field generation
and flow dynamics.
We consider three different setups with 𝑁𝜌 = 1, 1.5, and 3. These

density contrasts are practically achieved in our formulation after
fixing the dissipation number 𝐷𝑖 = 1.53, 2.7, and 10, respectively.
Following previous studies, we adopt moderate values of 𝐸 = 1.6 ×
10−5 and 𝑃𝑟 = 1 that reduce the numerical cost of each simulation,
allowing us to perform a parametric study varying the Rayleigh
number for the three different density contrasts. We increase the
Rayleigh number from 1.3 to 32.7 𝑅𝑎c to explore the implications of
distinct turbulence levels on the magnetic field morphology, where
the convective onset 𝑅𝑎c varies depending on the density contrast
over the convective zone (see Table 1).
We are thus left with the choice of the magnetic Prandtl number

𝑃𝑚. Recent studies (e.g., Dormy 2016; Dormy et al. 2018; Schwaiger
et al. 2019) have advocated that pushing a single parameter closer
to the values observed in astrophysical objects may not represent
the correct force balance at stake (e.g., 𝐸 ≈ 10−13, 𝑃𝑟 ≈ 10−7, and
𝑃𝑚 ≈ 10−3 at the bottom of the Solar convective zone; Ossendri-
jver 2003). There is considerable evidence from numerical simula-
tions with/without density contrast that there is a critical magnetic
Prandtl number 𝑃𝑚𝑐 below which dipolar dynamo solutions cannot

be achieved for a fixed Ekman number. This brings some concerns
as strong dipoles are observed in stars (e.g., Donati & Landstreet
2009). One potential way to overcome this limitation is to adopt
𝑃𝑚 > 𝑃𝑚𝑐 . However, previous works showed that 𝑃𝑚𝑐 varies with
𝐸 and 𝑁𝜌. For the value adopted in this work of 𝐸 = 1.6 × 10−5, it
was shown that the critical magnetic Prandtl number obeys the rela-
tion 𝑃𝑚𝑐 = 2𝑁𝜌 −2 (Schrinner et al. 2014). Therefore, we choose to
fix 𝑃𝑚 = 5 for the entire set of simulations, which is greater than the
critical value obtained for the highest stratified setup 𝑁𝜌 = 3. More-
over, we initialize our simulations with a dipole of strengthΛ = 0.44,
which has the same order of magnitude of typical stellar strengths
(e.g., Morin et al. 2008; Gastine et al. 2013).

3 RESULTS

We performed altogether 23 dynamo simulations with different den-
sity contrasts and Rayleigh numbers. We ran numerical models for a
few magnetic diffusion times to achieve meaningful dynamo steady-
states, which resulted here in rather costly simulations. The journal
of simulations is summarized in Table 2. We provide the total simu-
lation time 𝜏end in units of magnetic diffusion time, which we defined
as

𝜏𝜆 =
𝐷2cz
𝜆

= 𝑃𝑚

(
𝐷cz
𝑟o

)2
𝜏𝜈 (11)

using the convective shell size 𝐷cz = 𝑟o − 𝑟i as the relevant length
scale. Throughout this work, we employ overbars · to represent
averages over time, brackets 〈·〉 to represent volume averages, and
〈·〉𝑖 to represent spatial averages in the direction êi. Time averages are
performed only after the solutions have reached a well-established
steady-state and typically cover a few magnetic diffusion times (for
more information see Appendix B).

3.1 Magnetic morphology

Since the physical origin of the various magnetic field morphologies
observed in cool stars is still debated, in this study we particularly
focus on the field topology achieved in our simulations. Traditionally,
the magnetic field morphology has been assessed by measuring the
relative importance of the axial-dipole at the stellar surface. This
quantity, named dipolarity, is defined as the relative strength of the
axial-dipole1 (Christensen & Aubert 2006):

𝑓dip =

√√√√ ∬ ®B2
ℓ=1,𝑚=0 (𝑟 = 𝑟o, 𝜃, 𝜙) sin 𝜃 d𝜃 d𝜙∑11

ℓ=1
∑ℓ
𝑚=0

∬ ®B2
ℓ,𝑚

(𝑟 = 𝑟o, 𝜃, 𝜙) sin 𝜃 d𝜃 d𝜙
. (12)

Here, the normalization factor corresponds to the square root of the
total surface magnetic energy stored in the largest spatial scales, i.e.
in modes with order ℓ < 12. It thus matches the typical resolution
achieved in the surface magnetic field reconstruction of stars other
than the Sun (e.g., Donati et al. 2008; Morin et al. 2010; Folsom
et al. 2016, 2018). We recall the reader that toroidal fields vanish
at the outer boundary because of our magnetic boundary condition
(and, therefore, only poloidal fields contribute in Eq. 12). Following
previous authors (e.g., Oruba & Dormy 2014; Menu et al. 2020;

1 A different definition of ‘dipolarity’ based on the relative energy of the
axial dipole also appears in the literature, in which the right-hand-side of
Eq. 12 is squared.
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Table 2. Journal of simulations. First column yields the run ID. Columns 2-6 indicate the parameters imposed in each simulation (see Sec. 2.4). Column 7 and 8
show the total simulation time 𝜏end and the averaging time 𝜏avg (both expressed in units of magnetic diffusion time 𝜏𝜆 as defined in Eq. 11), respectively. Column
9 gives the dominant scale of convection ℓpeak (Eq. A1). Column 10 displays the local Rossby number (Eq. 13). Column 11 shows the Inertia over Lorentz force
ratio (see Sec. 3.3) and column 12 the kinetic over magnetic energy ratio (Eq. 15). Column 13 shows the dipolarity computed using Eq. 12, whereas column 14
gives a variation of the dipolarity measure based on the total dipole 𝑓dip,Tot. (see discussion in Sec. 3.1).

Run ID 𝑁𝜌 𝜌𝑖/𝜌𝑜 𝑅𝑎 𝑅𝑎/𝑅𝑎c (𝑁𝑟 , 𝑁𝜃 , 𝑁𝜙) 𝜏end 𝜏avg ℓpeak 𝑅𝑜ℓ FI/FL 𝐸𝐾 /𝐸𝑀 𝑓dip 𝑓dip,Tot.
(𝜏𝜆) (𝜏𝜆)

FC01 1.0 2.7 4.77 × 107 2.5 (73, 320, 640) 5.1 2.0 17 0.023 ± 0.004 0.03 ± 0.25 0.11 ± 0.17 0.84 ± 0.06 0.84 ± 0.06
FC02 1.0 2.7 6.25 × 107 3.3 (73, 320, 640) 4.3 2.0 18 0.036 ± 0.007 0.05 ± 0.39 0.05 ± 0.01 0.87 ± 0.02 0.87 ± 0.02
FC03 1.0 2.7 7.81 × 107 4.1 (73, 320, 640) 4.1 2.0 19 0.05 ± 0.01 0.07 ± 0.30 0.08 ± 0.01 0.87 ± 0.02 0.87 ± 0.01
FC04 1.0 2.7 1.04 × 108 5.5 (73, 512, 1024) 4.1 2.0 22 0.09 ± 0.02 0.12 ± 0.11 0.15 ± 0.02 0.87 ± 0.01 0.87 ± 0.01
FC05 1.0 2.7 1.25 × 108 6.5 (73, 512, 1024) 0.9 0.3 28 0.12 ± 0.03 0.16 ± 0.12 0.26 ± 0.03 0.87 ± 0.02 0.88 ± 0.02
FC06 1.0 2.7 1.56 × 108 8.2 (73, 512, 1024) 4.6 1.5 24 0.18 ± 0.05 0.49 ± 0.09 1.05 ± 0.08 0.12 ± 0.03 0.13 ± 0.03
FC07 1.0 2.7 3.12 × 108 16.3 (73, 512, 1024) 3.1 1.0 19 0.32 ± 0.09 0.57 ± 0.09 1.10 ± 0.09 0.11 ± 0.03 0.12 ± 0.02
FC08 1.0 2.7 6.25 × 108 32.7 (73, 1024, 2048) 1.3 0.5 14 0.53 ± 0.12 0.58 ± 0.08 1.36 ± 0.10 0.12 ± 0.03 0.18 ± 0.03

FC09 1.5 4.4 4.77 × 107 2.0 (73, 320, 640) 4.3 1.0 45 0.031 ± 0.007 0.25 ± 0.13 0.59 ± 0.30 0.71 ± 0.06 0.71 ± 0.06
FC10 1.5 4.4 6.25 × 107 2.6 (73, 320, 640) 4.5 1.4 38 0.05 ± 0.01 0.19 ± 0.19 0.58 ± 0.25 0.62 ± 0.04 0.62 ± 0.04
FC11 1.5 4.4 7.81 × 107 3.3 (73, 320, 640) 6.5 2.5 38 0.07 ± 0.02 0.33 ± 0.13 0.70 ± 0.19 0.44 ± 0.11 0.45 ± 0.11
FC12 1.5 4.4 1.04 × 108 4.3 (73, 512, 1024) 4.9 1.9 35 0.11 ± 0.04 0.28 ± 0.11 0.59 ± 0.08 0.15 ± 0.04 0.45 ± 0.04
FC13 1.5 4.4 1.56 × 108 6.5 (73, 512, 1024) 5.1 1.5 35 0.17 ± 0.06 0.34 ± 0.11 0.70 ± 0.09 0.46 ± 0.14 0.56 ± 0.08
FC14 1.5 4.4 3.12 × 108 13.0 (73, 512, 1024) 3.8 1.0 25 0.31 ± 0.12 0.57 ± 0.09 1.05 ± 0.09 0.12 ± 0.03 0.14 ± 0.03
FC15 1.5 4.4 6.25 × 108 26.0 (73, 512, 1024) 1.5 0.5 20 0.52 ± 0.19 0.64 ± 0.08 1.35 ± 0.09 0.13 ± 0.03 0.17 ± 0.03

FC16 3.0 19.3 4.77 × 107 1.3 (73, 320, 640) 8.1 1.9 42 0.013 ± 0.003 1.78 ± 0.54 1.17 ± 0.18 0.04 ± 0.02 0.12 ± 0.04
FC17 3.0 19.3 7.81 × 107 2.2 (73, 320, 640) 5.4 1.5 38 0.037 ± 0.008 0.33 ± 0.19 0.41 ± 0.10 0.63 ± 0.03 0.63 ± 0.03
FC18 3.0 19.3 1.56 × 108 4.4 (73, 512, 1024) 6.0 1.4 36 0.11 ± 0.05 0.36 ± 0.11 0.54 ± 0.05 0.54 ± 0.03 0.55 ± 0.03
FC19 3.0 19.3 2.08 × 108 5.8 (73, 512, 1024) 2.4 1.0 39 0.15 ± 0.08 0.35 ± 0.10 0.58 ± 0.06 0.53 ± 0.03 0.54 ± 0.03
FC20 3.0 19.3 3.12 × 108 8.8 (73, 512, 1024) 4.1 1.3 34 0.21 ± 0.13 0.36 ± 0.09 0.52 ± 0.04 0.63 ± 0.05 0.63 ± 0.05
FC21 3.0 19.3 6.25 × 108 17.6 (73, 512, 1024) 1.6 0.5 31 0.38 ± 0.25 0.47 ± 0.07 0.64 ± 0.06 0.75 ± 0.03 0.75 ± 0.03
FC22 3.0 19.3 7.44 × 108 20.9 (73, 1024, 2048) 1.1 0.4 30 0.41 ± 0.26 0.45 ± 0.05 0.68 ± 0.05 0.77 ± 0.02 0.77 ± 0.02
FC23 3.0 19.3 9.20 × 108 25.8 (73, 1024, 2048) 1.3 0.4 29 0.51 ± 0.32 0.70 ± 0.07 1.20 ± 0.08 0.23 ± 0.05 0.25 ± 0.05

Tassin et al. 2021), we define simulations with 𝑓dip ≥ 0.5 (or equiv-
alently, with an axial-dipole containing 25% of the magnetic energy
stored at modes up to ℓ = 11) as dipolar dynamos. Conversely, sim-
ulations in which 𝑓dip < 0.5 are defined as “multipolar” dynamos.
The dipolarity measurements are given in Table 2 along with an al-
ternative estimate based on the total dipole 𝑓dip,Tot. (i.e., including
the equatorial dipole contribution in the summation at the numera-
tor of Eq. 12). We note that none of our simulations would change
their classification as dipolar or multipolar dynamos if considering
a dipolarity based on the total dipole. We thus stick to the dipolarity
definition given by Eq. 12 throughout this work.
Figure 2 shows how the dipolarity varies with the Rayleigh num-

ber. This figure shows three panels with 𝑓dip as a function of 𝑅𝑎,
each at a particular 𝑁𝜌. Starting from the set of simulations with
𝑁𝜌 = 1 (Figure 2 a), we identify dipolar dynamos at low Rayleigh
numbers followed by a sharp transition to multipolar dynamos as 𝑅𝑎
increases. This finding is in line with earlier simulations of Gastine
et al. (2012, 2013)2 using 𝑃𝑚 = 1 (purple symbols), which showed
that the morphology transitions to a more complex configuration
around 𝑅𝑎 = 7𝑅𝑎c. It also extends Rayleigh’s parameter space cov-
erage by about a factor of three when compared to Gastine et al.
(2012, 2013), corroborating the hypothesis that only multipolar dy-

2 The control parameters adopted by Gastine et al. (2012, 2013) coincide
with those employed in this work with the exception of 𝑃𝑚. However, with
also different formulations of convective forcing (similar to what has been
described in Figure 1), caution must be applied when attributing possible
differences between the models to 𝑃𝑚.

namos exist for forcings above the threshold leading to the dipole
collapse (i.e., 𝑅𝑎 & 7𝑅𝑎c for 𝑁𝜌 = 1).
The dipolarity trend, however, changes for the models with

𝑁𝜌 = 1.5 (Figure 2 b). While the plateau with strong dipolar dy-
namos seen for the runs with 𝑁𝜌 = 1 no longer exists, intermediate
values of 𝑓dip appear, defining a rather continuous transition to the
multipolar branch. We highlight that two of our multipolar cases are
compatible with a dipole within error bars (estimated as one stan-
dard deviation over the time averaged value). An inspection of the
simulations around 5 𝑅𝑎c reveals one case with polarity reversals
(FC11) and two with excursions (FC12 and FC13) of the dipole
field, thus explaining why large error bars are found in those cases
where the dipolar field strongly varies in time. This finding is in ac-
cordance with previous studies evaluating reversing dipoles, which
observed a tendency for its occurrence at Rayleigh numbers close
to the transition between dipolar and multipolar dynamos (Kutzner
& Christensen 2002; Olson & Christensen 2006; Wicht & Tilgner
2010).
The most striking result to emerge from the data is seen for the

density contrast 𝑁𝜌 = 3 (Figure 2 c). Contrary to the other setups
considered in this work, a multipolar dynamo is found close to the
dynamo onset (𝑅𝑎 = 1.3𝑅𝑎c). The dipolarity then shows a marked
rise going fromalmost 0 to 0.62 as the forcing reaches about two times
the critical Rayleigh number. Dipolar dynamos are then consistently
sustained for a wide range of supercriticality until the morphology
finally transitions to a multipolar configuration at 𝑅𝑎 ∼ 25𝑅𝑎c.
Compared to the previous simulations of Gastine et al. (2012, 2013)
with 𝑃𝑚 = 1 and covering a parameter space of 𝑅𝑎 < 5𝑅𝑎c, we note
that dipolar dynamos are kept for a much wider range of forcing.
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Figure 2. Surface dipolar fraction as a function of the Rayleigh number for
the 23 runs listed in Table 2 (grey symbols). The shape of the symbols distin-
guishes between dipolar dynamos (circle) and multipolar dynamos (cross).
Simulations with density contrast N𝜌 = log 𝜌𝑖/𝜌𝑜 = 1, 1.5, and 3, are sepa-
rated respectively in panels (a), (b), and (c). Error bars represent one standard
deviation about the time averaged dipolarity. Stratified dynamoswith the same
radius ratio (𝑟i/𝑟o = 0.6) and density contrasts, but 𝑃𝑚 = 1 are included for
comparison (purple symbols; Gastine et al. 2012, 2013).

Comparing 𝑁𝜌 = 1 and 𝑁𝜌 = 1.5 simulations, we see that the
range of 𝑅𝑎 numbers where the dipolar branch can be obtained
shrinks as the density contrast increases. Although this result seems
to reflect those of Gastine et al. (2012, 2013) and Jones (2014),
who pointed out that dipolar dynamos would ultimately disappear
for 𝑁𝜌 & 2, the strong dipoles obtained for 𝑁𝜌 = 3 do not support

Figure 3. Mollweide projections of the surface radial magnetic field for a
dipolar (top) and a multipolar (bottom) case with 𝑁𝜌 = 3, corresponding to
the run IDs FC22 and FC23, respectively. Red shades correspond to radial
fields point outward and blue shades inward.

this early conclusion. In fact, these results substantiate the previously
unique simulation of Yadav et al. (2015), which yielded a strong
dipole ( 𝑓dip ≈ 0.55) despite the high density contrast of 𝑁𝜌 = 5.
As argued by Petitdemange & Raynaud (2019), one possibility is
that the dipolarity loss found in previous works resulted from the
restricted parameter space explored rather than being caused by a real
modification of the dynamo mechanisms taking place in stars with
different density contrasts. Indeed as we shall explore in Sec. 3.3, our
setup with 𝑃𝑚 = 5 increases the contribution of the Lorentz force to
the force balance, sustaining dipolar dynamos even for stratification
as high as 𝑁𝜌 = 3. If anything, our simulations reinforce the idea that
the regime of stability of dipolar dynamos depends on the parameter
space explored (Raynaud et al. 2015) and provides evidence that
sometimes higher stratification helps to sustain dipolar fields.
Figure 3 shows the surface radial magnetic field for the last dipole

before the transition (FC22) and themultipolar case after the collapse
(FC23). Compared to the runs with 𝑁𝜌 = 1 (not shown here), smaller
scales dominate the structure of the surface radial magnetic field in
both cases. Indeed, a well-known effect of increasing the density
stratification is to decrease the typical flow length scale, which in
turn decreases the typical size of magnetic structures. We come back
to this point when we discuss the scale at which the kinetic energy
peaks in our simulations (see Sec. 3.3). It is rather clear from this
figure that a large-scale dipolar structure is present in the upper panel,
with a positive North pole and negative South pole. On the contrary,
in the bottom panel, the magnetic field is dominated by a salt and
pepper like structure with the strongest field concentrations located
in narrow bands more or less extended in latitude. Figure 4 enables
us to proceed to a closer inspection of the relationship between the
flow and field morphologies. This figure shows a 3D rendering of the
radial velocity field (left panel) and of the radial magnetic field (right
panel) in the dipolar run shown in the top panel of Figure 3. It is
rather clear from these 3D snapshots that narrow downwelling flows
create intense magnetic flux concentrations, while broad upwelling
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Figure 4. Snapshot of the radial velocity (left) and radial magnetic field (right) in the dipolar run shown in Figure3 (FC22).

flows diffuse the magnetic field. We also note that in this strongly
stratified case and at this level of supercriticality (𝑅𝑎 = 20.9 𝑅𝑎c),
the amplitude of the convective velocities is strongest at the outer
shell, as expected for strongly stratified systems.

3.2 The dipolar-multipolar transition

Many studies interpreted the transition from the dipolar dynamos
to multipolar dynamos in terms of the balance between inertia and
Coriolis forces in the Navier-Stokes equation (Eq. 1). A proxy to
estimate this force ratio is the local Rossby number 𝑅𝑜ℓ introduced
by Christensen & Aubert (2006). They suggested that the dipole-
multipole transition is well captured by

𝑅𝑜ℓ =

〈
𝑢rms

Ω𝑜𝐷cz

ℓ𝑢

𝜋

〉
, where ℓ𝑢 =

∑
ℓ ℓ𝑢

2
ℓ∑

ℓ 𝑢
2
ℓ

(13)

is the mean spherical harmonic degree of the flow. The global picture
suggested that axial-dipole dominated solutions could only exist at
low-Rossby numbers because of the ordering role played by the Cori-
olis force (with typically 𝑅𝑜ℓ . 0.12, Christensen & Aubert 2006).
Beyond this limit, the increased importance of inertia compared to
Coriolis would cause the dipole collapse (with the star thus joining
the multipolar branch).
We plot 𝑓dip as a function of 𝑅𝑜ℓ in Figure 5. Simulations with

𝑁𝜌 = 1 display a dipolar-multipolar transition at 𝑅𝑜ℓ ∼ 0.12 (vertical
dashed line), in agreement with Boussinesq results and arguments of
Christensen & Aubert (2006). However, if we now turn to the runs
with 𝑁𝜌 = 1.5 or 3, there is no clear evidence that 𝑅𝑜ℓ influences
the dipole collapse. For these density contrasts, multipolar solutions
are identified in the Rossby regime where mainly dipolar fields are
predicted and vice-versa.
Perhaps one of the most interesting aspect evidenced by our sim-

ulations is that axial-dipole dominated simulations might display
similar values of 𝑓dip regardless of whether it falls in the dipolar or
multipolar branch as initially advised from Boussinesq simulations
(Christensen & Aubert 2006). Another key aspect is that dipolar so-
lutions persist for large Rossby numbers precisely for the setup of
highest density contrast (𝑁𝜌 = 3), which corresponds to the most
realistic model in the stellar context.
In an attempt to create a more general description for the dipolar

transition, other proxies besides the Rossby number were explored in
the literature to explain the possible causes for the dipole breakdown.
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Figure 5. Surface dipolar fraction as a function of the local Rossby number
𝑅𝑜ℓ (Eq. 13). Colours group different levels of stratification (see legend),
whereas symbols distinguish dipolar dynamos (circle) from multipolar dy-
namos (cross). The horizontal dashed black line marks the dipolar-multipolar
transition, and the vertical one indicates the standard dipolar collapse pre-
dicted from geodynamo simulations (Christensen & Aubert 2006).

As we discuss in Appendix C, the change on the flow structure
(Soderlund et al. 2012; Garcia et al. 2017) is not enough to explain the
transition from dipoles to multipoles in our numerical simulations.
In particular, it seems that the magnetic morphology can only be
described by a change on the flow arrangement when considering
systemswhere themagnetic feedback on the flow is small/nonexistent
(essentially behaving as a hydrodynamic flow).
Recently, Boussinesq simulations have shown that for systems in

which the magnetic feedback is significant the relative importance
of the Lorentz force in the Navier Stokes equation can describe the
dipole breakdown (Menu et al. 2020; Tassin et al. 2021). However,
it is not clear whether those analyses still hold in anelastic dynamos.
We explore next whether the balance between the forces entering the
Navier-Stokes equation control themagneticmorphology in stratified
systems.
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Figure 6. Force balance spectra for the same dipolar (top) andmultipolar (bot-
tom) models shown in Figure 3. Solid lines correspond to time-averaged force
spectra, with colours representing the different forces entering the Navier-
Stokes equation. Shaded regions represent one standard deviation from the
time-averaged value. The vertical dashed line marks the integral scale ℓpeak
defined in Appendix A.

3.3 Force balance: inertia vs Lorentz force

Following previous studies (Aubert et al. 2017; Schwaiger et al. 2019;
Tassin et al. 2021; Gastine & Wicht 2021), we compute the time-
averaged root-mean-square (RMS) force spectra of the individual
forces identified below

𝐸

[
𝜕®u
𝜕𝑡

+ (®u · ∇)®u
]

︸                  ︷︷                  ︸
Inertia

+ 2ê𝑧 × ®u︸  ︷︷  ︸
Coriolis

=

− ∇

(
𝑝

𝜌̃

)
︸ ︷︷ ︸
Pressure

+ 𝑅𝑎𝐸

𝑃𝑟
𝑔𝑠′êr︸       ︷︷       ︸

Buoyancy

+ 1
𝑃𝑚𝜌̃

(∇ × ®B) × ®B︸                 ︷︷                 ︸
Lorentz

+ 𝐸

𝜌̃
∇ · 𝑆︸  ︷︷  ︸

Viscous

.

Here, time-averaged RMS force spectra are given by

FRMS (ℓ) =

√√√〈
ℓ∑︁

𝑚=−ℓ

��� ®𝐹ℓ,𝑚 (𝑟, 𝜃, 𝜙, 𝑡)���2〉. (14)

where ®𝐹ℓ,𝑚 is the vector spherical harmonic transform of the force
at stake.
Figure 6 illustrates the force balance spectra for a dipolar and

a multipolar run with 𝑁𝜌 = 3 (corresponding to the same runs
shown in Figure 3). Both models display forces whose respective

contributions vary depending on the spatial scale. At scales up to
ℓ ∼ 40, the Coriolis (black) and pressure (blue) forces balance each
other at first order resulting in a quasi-geostrophic balance (QG, for
further details, seeCalkins 2018),whereas buoyancy (green), Lorentz
(red), and inertial (yellow) forces show a marginal contribution at
second-order. On the other hand, at small scales (ℓ & 40) the Lorentz
force becomes dominant and starts to balance the pressure force
in the place of the Coriolis force. Comparing both models, we can
identify an increase in the inertial contribution from the dipolar to the
multipolar case, with the inertial force reaching values comparable
to the Lorentz force in the latter.
To track the relative contribution of each force in our parametric

study, we look for a particular length scale ℓpeak defined as the dom-
inant scale of the convective flow (for more details on its calculation,
see appendix A and Schwaiger et al. 2021). The values of ℓpeak are
given in Table 2 for each simulation. We note here that the impact
of the density stratification is reflected in the strong increase of ℓpeak
with 𝑁𝜌. Indeed, from 𝑁𝜌 = 1 to 𝑁𝜌 = 3, ℓpeak is typically multi-
plied by a factor 2. We now compute the RMS forces at the integral
scale ℓpeak, namely, Coriolis force F𝐶 , pressure gradient force F𝑃 ,
buoyancy (or Archimedes) force F𝐵 , Lorentz force F𝐿 , inertial force
F𝐼 , and the viscous force F𝑉 .
Figure 7 shows these forces as a function of 𝑅𝑎/𝑅𝑎c for models

with 𝑁𝜌 = 1 and 3. While the entire data set features a QG balance
at first order, the ageostrophic part of the Coriolis force, defined as
FAgeo = |F𝐶 − F𝑃 |, enters a second-order force balance that varies
depending on 𝑁𝜌 and 𝑅𝑎.
For 𝑁𝜌 = 1 (top panel), we identify two kinds of second-order

balance depending on the Rayleigh number. At 𝑅𝑎 < 7𝑅𝑎c, the
ageostrophic Coriolis force is balanced by F𝐿 and F𝐵 forces, which
dominate over F𝐼 and F𝑉 by roughly an order of magnitude. This
flow state, devised byDavidson (2013), is frequently referred to as the
quasi-geostrophic Magneto-Archimedean-Coriolis (QG-MAC) bal-
ance, and it has been obtained in geodynamo models (Yadav et al.
2016; Aubert et al. 2017; Schaeffer et al. 2017) and in anelastic mod-
els of gas giant planets (Gastine & Wicht 2021). At 𝑅𝑎 > 7𝑅𝑎c,
inertial forces become important and contribute to the second-order
balance of the Navier-Stokes equation. We observe that the break-
down of the dipole occurs at this point. The role played by inertia
in destabilizing dipoles was likewise found before in Boussinesq
simulations (e.g., Sreenivasan & Jones 2006; Christensen & Aubert
2006).
Similar conclusions can be drawn for the 𝑁𝜌 = 3 data set (bottom

panel), with the main difference relying on the isolated multipolar
solution at 𝑅𝑎 = 1.3𝑅𝑎c, i.e., very close to the convective onset.
Among the entire set of simulations performed, this case is the only
one that does not display a dominant Lorentz contribution to the
flow dynamics. Instead, it yields a strong contribution of F𝐵 and
a marginal one of F𝑉 . This flow adjustment is often called quasi-
geostrophic Viscous-Archimedean-Coriolis (QG-VAC) balance (Ya-
dav et al. 2016; Schwaiger et al. 2021). The QG-VAC balance is
quickly destroyed as turbulence builds-up due to a sharp rise in the
F𝐿 with 𝑅𝑎. One of the main conclusions we can extract from Fig-
ure 7 is that with this stratification, dipolar dynamos prevail for much
higher 𝑅𝑎/𝑅𝑎c than for the less stratified cases. The transition in the
surface field morphology is indeed seen at 𝑅𝑎 = 25.8𝑅𝑎c. Akin to
what has been described for 𝑁𝜌 = 1, the morphology transition oc-
curs as the gap between F𝐿 and F𝐼 decreases. This finding suggests
that, in the Lorentz force dominated regime, the effect of the density
stratification is to increase the level of turbulence at which inertial
forces become comparable to the Lorentz forces.
To test the hypothesis that the importance of inertia in the 2nd-
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Figure 7. Force contributions at the integral scale ℓpeak (Eq. 14) as a function
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.

order force balance is the main factor responsible for destabilising
dipolar solutions, we plot in Figure 8 the dependence between 𝑓dip
and F𝐼 /F𝐿 for the three setups considered in this work. Dipolar and
multipolar branches are identified using this proxy.We find that simu-
lations with F𝐿 � F𝐼 develop strong dipolar dynamos, while a sharp
transition to multipolar dynamos is obtained as inertia increases in
intensity. A tentative description for the dipolar-multipolar transition
gives F𝐼 /F𝐿 ' 0.4 (vertical dashed line). It follows that F𝐼 /F𝐿 pro-
vides a more unified view of the dipolar-multipolar transition than
𝑅𝑜ℓ (Figure 5), independently of the density contrast 𝑁𝜌. This result
agrees with those of Menu et al. (2020) and Tassin et al. (2021), who
also found that the competition between inertial and Lorentz forces
can capture the dipole collapse in Boussinesq simulations. We thus
confirm that these results still hold in stratified systems, and even
argue that the transition may occur at larger levels of turbulence for
strongly stratified cases, opening the possibility that stars harbouring
strong dipoles may indeed operate in this Lorentz force-dominated
regime.

10−1 100

FI/FL

0.0

0.2

0.4

0.6

0.8

1.0

D
ip

ol
ar

it
y,
f d

ip

Density contrast
Nρ = 1.0 Nρ = 1.5 Nρ = 3.0

Magnetic morphology
Dipolar Multipolar

Figure 8. Surface dipolar fraction as a function of the ratio between inertia
and Lorentz force at the integral scale. Symbols are defined as in Figure 5.
The vertical dashed black line indicates the tentative threshold F𝐼 /F𝐿 = 0.4
for the dipole breakdown. The error bars correspond to one standard deviation
about the time-averaged quantities. Shaded areas indicate the dipolar (cyan)
and multipolar (coral) branches proposed in this work.

3.4 Possible proxies for stellar observations

3.4.1 Energy distribution

Following Tassin et al. (2021), we now try to look for an alternative
quantity to the ratio F𝐼 /F𝐿 that is more accessible to observations
and yet incorporates the physics behind the dipole collapse. To estab-
lish this newmeasure, we use the kinetic energy stored in the convec-
tive motions (𝐸𝐾 ) as a proxy of the inertial force and the magnetic
energy (𝐸𝑀 ) as a proxy of the Lorentz force. The rough approxima-
tion of F𝐼 /F𝐿 is then given by the time and volume-averaged energy
ratio

𝐸𝐾

𝐸𝑀
= 𝐸𝑃𝑚

〈
𝜌̃®u2

〉〈
®B2

〉 . (15)

Figure 9 shows the dipolarity in our simulations as a function
of this new proxy 𝐸𝐾 /𝐸𝑀 . We find dipolar morphologies at low-
𝐸𝐾 /𝐸𝑀 and complex multipolar morphologies below equipartition
(i.e., 𝐸𝐾 /𝐸𝑀 > 1). These findings suggest that the energy ratio can
likewise capture the dipolar-multipolar transition. It stands out that
the energy ratio 𝐸𝐾 /𝐸𝑀 in the dipolar cases with 𝑁𝜌 = 1 are sig-
nificantly smaller than those obtained for the other density contrasts.
This behaviour reflects what was already seen in Figure 8 using the
force ratio, providing further evidence that F𝐼 /F𝐿 and 𝐸𝐾 /𝐸𝑀 are
indeed correlated. This occurs because the magnetic energy gener-
ated in these models is 2-6 times larger than the ones reached by other
dipolar simulations in the same range of supercriticality (and hence
with similar 𝐸𝐾 ). The shaded areas in Figure 9 show the tentative
dipolar (cyan) and multipolar (coral) branches, along with a transi-
tional region (grey) set to match the uncertainties of 𝐸𝐾 /𝐸𝑀 in the
runs falling in the transition. From the data, we derive that the dipole
breakdown occurs around 𝐸𝐾 /𝐸𝑀 ' 0.7 (vertical dashed line).
As we will discuss in Section 4, one advantage of the energy ra-

tio is that we can use stellar observations to estimate 𝐸𝐾 /𝐸𝑀 at the
stellar surface. Such an observational quantity is not strictly speaking
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Figure 9. Surface dipolar fraction in terms of the ratio of the time and
volume-integrated kinetic energy stored in the convective motions and mag-
netic energy. The vertical dashed black line indicates the tentative threshold
𝐸𝐾 /𝐸𝑀 = 0.7 for the dipole collapse. Shaded areas indicate the dipolar
(cyan) and multipolar (coral) branches proposed in this work.

identical to the definition in Eq. 15, and we could instead compute
𝐸𝐾 /𝐸𝑀 at the surface of our numerical simulations. However, the
surface of numerical simulations differs from the surface of stars be-
cause boundary conditions constrain the field and flow.Moreover, 3D
anelastic dynamo simulations better reflect the physics of the stellar
convective envelope when excluding the outer few per cent of the
radial domain as the anelastic approximation loses its validity at the
stellar surface. For those reasons, we believe that volume-averaged
energies are more adequate when drawing a parallel between numer-
ical simulations and observations in Section 4.

3.4.2 Differential rotation

Stellar observations can give access not only to the surface magnetic
fields in stars but also on some flow characteristics, like the surface
differential rotation (e.g., Donati et al. 2008; Morin et al. 2008).
Since we can measure in detail the differential rotation obtained in
our calculations, we propose here to determine the amplitude and
sign of the latitudinal differential rotation obtained in our dipolar
and multipolar dynamo simulations. This will be used mostly for a
comparison to the observations discussed in the following section.
Although numerical studies usually compute the latitudinal shear

as the difference between the angular velocity at the equator minus an
arbitrary latitude close to the poles, this parameter strongly depends
on the chosen polar latitude as fast zonal flow variations may exist.
Therefore, we compute the relative surface shear using a less depen-
dent definition based on the difference between the angular velocity
averaged on the near-surface layer (NSL) at equatorial regions and
polar regions:

𝜒Ω =
〈Ω〉NSL, |𝜃 |<40𝑜 − 〈Ω〉NSL,40𝑜< |𝜃 |<80𝑜

Ω𝑜
. (16)

Here, we define as NSL the outer shell with thickness 0.05 𝑟o and
we exclude high latitudes with |𝜃 | > 80𝑜 from our computations
(where small scale features are observed but should likely average
out if considering longer time averages).
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Figure 10.Dipolarity as a function of the differential rotation measured at the
surface. The dashed vertical line represents a solid body rotation using our
shear definition in Eq. 16. Simulations with negative (positive) 𝜒Ω display
antisolar differential rotation profiles, while those with positive 𝜒Ω have solar-
like differential rotation profiles.

Figure 10 shows the dipolarity as a function of the relative latitudi-
nal shear at the near-surface layer (cf. Eq. 16). We want to emphasize
that a non-dimensional quantity is used here to quantify the shear
since the value of Ω0 in physical units is not set a priori in our
simulations. However, note that the same Ekman number (and thus
the same Ω0) is used in all simulations so that the trend would be
similar if only the numerator of Eq. 16 was used as the x-axis of Fig-
ure 10. The first striking feature is that all simulations exhibit a rather
weak level of differential rotation with 𝜒Ω < 2%. This quenching on
the differential rotation can be understood because magnetic stresses
are always active in our calculations as Lorentz forces significantly
impact the flow (Christensen et al. 1999; Busse 2002). Another im-
portant result is that the level of surface differential rotation is not
negligible in dipolar cases, especially at 𝑁𝜌 = 3, compared to the
multipolar ones. However, an important difference between dipolar
and multipolar simulations is the differential rotation sign. Figure
10 indeed reveals that all simulations with dipole dominated mor-
phology build an antisolar differential rotation profile. We find that
non-negligible relative shears exist in our dipolar cases, with 𝜒Ω
ranging from −0.57 to −0.03%. We note that these antisolar profiles
were also observed in the geodynamo simulations of Aubert (2005)
and only illustrate the fact that the Lorentz force plays a significant
role here in the angular momentum transport. On the other hand,
solar-like differential rotation profiles only show up in the multipo-
lar simulations. The only three multipolar cases developing antisolar
profiles are those with 𝑁𝜌 = 1.5, whose dipoles are either reversing
or excursioning. The equatorial acceleration seen in the multipolar
cases is consistent with the fact that it is only in this situation that
inertia becomes comparable to Lorentz forces, as discussed in Sec-
tion 3.2. This finding is in line with the non-magnetic simulations
of Gastine et al. (2014), where solar-like profiles are found when
Reynolds stresses are enhanced. Indeed, the Reynolds stresses, as-
sociated with inertial forces, are known to be responsible for the
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equatorial acceleration of the flow (Miesch 2005). They thus need to
be significant enough to counteract the angular momentum transport
by magnetic fields. When considering the multipolar simulations
with solar-like differential rotation, we find that equatorial regions
indeed accelerate, with values going up to 1.5%.

4 DISCUSSION AND CONCLUSIONS

This paper explored through 3D dynamo simulations the physical
mechanisms responsible for controlling the magnetic morphology of
large-scale fields in partly convective cool stars. To address this point,
we carried out 23 simulations of a spherical convective rotating shell
with a radius ratio of 0.6 between the bottom and the top of the shell.
Our modelling strategy follows recent geodynamo studies of Menu
et al. (2020) and Tassin et al. (2021), who suggested that having
a significant Lorentz force contribution in the force balance when
simulating convective dynamos could modify conclusions about the
magnetic morphology. However, unlike their study, we considered a
fluid layer with a density contrast between the top and bottom of the
convective zone to model conditions applicable to stellar interiors.
Our simulations demonstrate for the first time that axial dipole

dominated solutions can be achieved at large Rossby numbers in
stratified systems (up to 𝑅𝑜ℓ = 0.4). Even more important maybe
is the fact that these dipoles at high 𝑅𝑜ℓ are obtained for simula-
tions with a large density contrast between the top and bottom of
the convective zone, at 𝑁𝜌 = 3. This finding differs from previous
numerical studies suggesting that dipolar dynamos would only exist
at low-Rossby numbers (e.g., Christensen & Aubert 2006; Gastine
et al. 2012) and that strong stratification may make it more difficult
for dipoles to survive. In the same vein, Raynaud et al. (2015) have
also suggested that dynamosmay be obtained for strong stratification,
but we here extend the validity of their result to 𝑅𝑜 > 0.1. In partic-
ular, it represents an important step towards the understanding of the
magnetic morphology of stars, as strong axial dipoles have been like-
wise observed in some stars with 𝑅𝑜ℓ > 0.1, e.g., TYC 5164-567-1
( 𝑓dip = 0.77; Folsom et al. 2016), V439 And ( 𝑓dip = 0.60; Folsom
et al. 2016), HD 6569 ( 𝑓dip = 0.53; Folsom et al. 2018), and CE Boo
( 𝑓dip = 0.76; Donati et al. 2008). We note that we also find solu-
tions at 𝑁𝜌 = 1.5 with flipping or excursioning dipoles, producing
measures of the dipolar fraction which can significantly vary in time.
This could potentially be reminiscent to the strong variations in the
dipolar and quadrupolar modes observed in the Sun (DeRosa et al.
2012) or other solar-like stars over their magnetic cycle (e.g., Petit
et al. 2008; Boro Saikia et al. 2018), all falling under the high Rossby
regime.
Taken together, our parameter survey evidenced that the Rossby

number cannot capture the transition in the surface field morphology
when the Lorentz force is strong. We explored the possible mecha-
nisms causing the axial dipole collapse using the relative amplitude
of the axial dipole at the surface to measure the magnetic morphol-
ogy in our simulations (cf. Eq. 12). From the investigation of the
flow configuration, there was no evidence of its influence on the
magnetic morphology. These findings can be understood by the sig-
nificant back reaction of the magnetic field on the flow through the
Lorentz force. As argued in the early study of Garcia et al. (2017),
the flow configuration only emerges as a good proxy of the magnetic
morphology when the flow transitions are similar to those observed
in hydrodynamical simulations. Indeed the force balance analysis
shows a significant Lorentz force contribution to the flow dynamics
in our calculations.
An important finding that emerged from the force balance study is

that the ratio between the inertial and magnetic forces can describe
the dipole-multipole transition of dynamomodels with a background
density contrast. We found that the dipole branch is recovered when
the Lorentz force dominates over the initial force, with the transition
to multipolar branch occurring around F𝐼 /F𝐿 ' 0.4. Similar to
the conclusions obtained in past anelastic studies, it remains valid
that the increased influence of inertia on the flow is responsible for
destabilizing the axial dipoles. However, our work shows that instead
of the traditional comparison with the Coriolis force (through the
Rossby number), it is the relative importance of inertia compared
to the Lorentz force that controls the transition if the magnetic back
reaction on the flow is strong. With similar conclusions drawn by
recent geodynamo simulations with 𝑁𝜌 = 0 (Menu et al. 2020),
F𝐼 /F𝐿 seems to emerge as a reliable predictor of the magnetic field
morphology of stars and planets.
Because a direct estimate of the actual forces at play is not prac-

tical in stellar interiors, we explored an alternative proxy based on
the ratio of kinetic to magnetic energies (Tassin et al. 2021). The
investigation of 𝐸𝐾 /𝐸𝑀 revealed dipolar and multipolar branches
confirming the ability of 𝐸𝐾 /𝐸𝑀 to describe the dipole collapse in
numerical simulations (early proposed by Boussinesq simulations;
Kutzner & Christensen 2002; Tassin et al. 2021). From our data
set, we found that stratified systems emerge as multipolar dynamos
whenever 𝐸𝐾 /𝐸𝑀 & 0.7.
To tentatively test this proxy with observations, we gathered from

the literature partly-convective stars with large-scale surface mag-
netic fields reconstructed using the Zeeman-Doppler imaging tech-
nique (for details of the technique see, e.g., Donati et al. 1997; Donati
& Brown 1997; Donati et al. 2006b). Given that our simulations cor-
respond to a convective shell spanning the outer 40% of the radial
domain, we focused on partly convectiveM dwarfs withmasses rang-
ing from 0.38 to 0.60𝑀� , whose convective zones are expected to
feature radius ratios (between the bottom and top of the convective
zone) ranging from 0.50 to 0.66 (estimated with the ATON code, de-
scribed in Landin et al. 2006), i.e., with roughly the same extension
as those modeled in our simulations. We consider for consistency the
homogeneous sample of stars published by Donati et al. (2008) and
Morin et al. (2008), which had their surface magnetic maps recon-
structed with the same Zeeman-Doppler imaging code. We find eight
stars obeying the mass condition described above: GJ 182, DT Vir,
DS Leo, GJ 49, OT Ser, CE Boo, AD Leo, and EQ Peg A. We also
take into account multiple magnetic field reconstructions existent for
DT Vir, DS Leo, and OT Ser (with each star being observed at two
different epochs).
From their magnetic surface maps, we directly derive 𝐸𝑀 based

on the averaged surface magnetic field (𝐵rms) and a modified dipo-
larity that is comparable to our definition in Eq. 12 but with a maxi-
mum spherical harmonic degree that varies depending on the spatial
resolution achieved for each star (typically ℓmax ranged from 6 to
10). We find that under our morphology classification CE Boo, AD
Leo, and EQ Peg A fall in the criteria of dipolar dynamos ( 𝑓dip =
0.76, 0.57, and 0.57, respectively), while the other stars harbour a
multipolar dynamo. Because observations only have access to the
magnetic energy at the surface, we accordingly estimate the surface
kinetic energy 𝐸𝐾 to compute the energy ratio of each star. We use
published values of mass 𝑀★ and radius 𝑅★ present in the original
Zeeman-Doppler imaging study. We adopt a rough approximation
for the turbulent velocity 𝑢rms = 𝑅★/𝜏𝑐 and photospheric density
𝜌★,pho =

𝜌̄★
𝜌̄�

𝜌�,pho, where 𝜏𝑐 is the convective turnover time de-
rived with the empirical relationships based in the stellar mass 𝑀★
(Wright et al. 2018), 𝜌̄�,★ = 𝑀�,★/(4𝜋𝑅3�,★/3) is the mean den-
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Figure 11. Observational counterpart of Figure 9. Symbols show the mag-
netic properties of the M dwarfs derived with the Zeeman-Doppler imaging
technique (Donati et al. 2008; Morin et al. 2008). The symbol size corre-
spond to the field strength at the surface 〈𝐵〉, the shape corresponds to the
degree of axisymmetry of the magnetic field, and colors represent the amount
of energy stored in the poloidal field. Shaded areas are similar to Figure 9,
with cyan representing strong dipoles axisymmetric fields (top left) and coral
the multipolar non-axisymmetric fields (bottom right). However, we use a
dipole-multipole transition of 𝐸𝐾 /𝐸𝑀 = 0.35 (vertical dashed line) that is
lower than the one obtained with simulations (𝐸𝐾 /𝐸𝑀 = 0.7).

sity, and 𝜌�,pho ≈ 10−6 𝑔 𝑐𝑚−3 is the Sun’s photospheric density
(Brandenburg & Subramanian 2005). We thus estimate

𝐸𝐾

𝐸𝑀
=

𝜌★,pho𝑢
2
rms

2
8𝜋
𝐵2rms

≈ 4𝜋
𝐵2rms

(
𝑀★

𝑀�

) (
𝑅�
𝑅★

)3 (
𝑅★

𝜏𝑐

)2
𝜌�,pho.

(17)

Figure 11 illustrates themagnetic properties ofM dwarfs as a func-
tion of the energy ratio computed with Eq. 17. The sharp transition
in the magnetic morphology is apparent from this plot. We find that
M dwarfs with 𝐸𝐾 /𝐸𝑀 . 0.35 have surface large-scale magnetic
fields that are mostly poloidal and with strong axisymmetric dipoles.
In contrast, M dwarf stars with higher energy ratios 𝐸𝐾 /𝐸𝑀 host
large-scale fields with strong toroidal fields and weak axial dipoles.
We infer a dipolar-multipolar transition around 𝐸𝐾 /𝐸𝑀 ' 0.35
(dashed vertical line) from the observational data. As we consid-
ered volume-averaged energies instead of surface-averaged energies
in our simulations (see details in Section 3.4.1), it is not surprising
that observations show a dipole collapse at a different value than the
one predicted from our simulations. Despite that, it is encouraging
to see that an energy ratio proxy also seems to describe the transition
in the magnetic morphology of M dwarfs. Future simulations with
different sizes of the convective envelope will help assess whether
the dipole collapse is sensitive to this parameter and, therefore, if it
is a potential source of uncertainties when determining the 𝐸𝐾 /𝐸𝑀
threshold.
Finally, we explored the surface shear achieved in our simulations.

We identified that, although quite weak, simulations with multipolar
surface magnetic fields favour solar-like differential rotation profiles.
In contrast, all dipole dominated simulations yield antisolar differ-
ential rotation (similar to Aubert 2005; Dobler et al. 2006). Here,
we can also draw an observational parallel as surface shears have
been measured for some of the stars in Figure 11 (Donati et al. 2008;
Morin et al. 2008). Because our numerical simulations have a con-
stant rotation period, the transition in the magnetic field morphology
with the relative shear reflects the change in the surface shear (Fig-

0 30 60 90 120

dΩ (mrad d−1)

0.0

0.2

0.4

0.6

0.8

1.0

D
ip

ol
ar

it
y,
f d

ip

0.0

0.2

0.5

0.8

1.0

C
ol

or
:
f p

o
l

/
S

h
ap

e:
f a

x
i

50

84

141

238

400

S
iz

e:
〈B
〉(

G
)

Figure 12. Dipolarity as a function of the surface differential rotation 𝑑Ω
measured for a sample of M dwarfs (Donati et al. 2008; Morin et al. 2008).
The surface differential rotation is defined as 𝑑Ω = Ωeq −Ωpol, where Ωeq is
the angular velocity at the equator and Ωpol at the pole. Symbols are defined
as in Figure 11.

ure 10). Therefore, we use the latitudinal surface shear 𝑑Ω rather
than the relative shear as the relevant parameter to consider for ob-
servations when the rotation period varies from star to star (from 1
to 9 d in our sample). Figure 12 shows the link between the axial
dipole contribution to the large-scale magnetic morphology and the
measured latitudinal surface shear for M dwarf stars. The data in
Figure 12 give hints of a sharp transition in the magnetic complexity
of M dwarfs with the increase of 𝑑Ω, with strong dipoles preventing
significant latitudinal differential rotation at the surface and multi-
poles co-existing with large latitudinal surface shears. We note that
this observational trend also extends to fully convective stars, with
those harboring strong dipoles almost rotating as solid bodies, i.e.,
𝑑Ω ∼ 0 (Donati et al. 2006a; Morin et al. 2008). However, contrary
to the trend in our simulations, we find that the dipole collapses at
positive shears for M dwarfs (𝑑Ω ∼ 55mrad d−1). Moreover, none of
the stars from Donati et al. (2008) or Morin et al. (2008) had an anti-
solar differential rotation (akin to other shear detection in M dwarfs,
e.g., Hébrard et al. 2016; Zaleski et al. 2020). The direct comparison
between observations and simulations is thus slightly less straight-
forward when shear profiles are concerned. It remains therefore to be
investigated whether lowering the viscosity and magnetic diffusivity
in our simulations can modify the differential rotation profile. For
instance, it would be important to test if the antisolar regime found in
the present calculations survives in more realistic parameter ranges.
Further research is thus necessary to investigate how smaller Ekman
numbers and/or larger magnetic Reynolds numbers can impact the
transition seen in the differential rotation profile and amplitude.
The parameter space explored in this study offers new insights

into the mechanisms controlling the magnetic morphology of stars.
Our 3D dynamo simulations show that the magnetic morphology of
the large-scale field depends on how much the Lorentz force is able
to impact the flow. Although we cannot exclude the possibility that
stronger anelastic effects in stars may modify this conclusion, we
found that the energy ratio proxy proposed in our work to describe
the transition in the magnetic morphology indeed succeeds at de-
scribing the varying large-scale magnetic topology of a small sample
of M dwarfs featuring similar convective zone geometries, and for
which a homogeneous collection of ZDI measurements is available
in the literature. This first result leaves room for further numerical
explorations aimed at studying the impact of more parameters, such
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as the size of the convective zone and the rotation rate. These sim-
ulations will broaden potential comparisons with stars of different
spectral types than the ones considered here, and therefore to further
investigate whether the proxy that we propose can be used in a more
general context. We also leave for a forthcoming paper the study of
whether a radiative interior in the numerical domain is also able to
impact the magnetic morphology of the large-scale field and its tran-
sition from a mainly dipolar to a mainly multipolar structure, and to
modify the conclusions reached here regarding the proxies that best
describe where this transition occurs in the parameter space.
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Figure A1. Time-averaged dimensionless poloidal kinetic energy spectra for
the dipolar (red solid line) and multipolar (purple solid line) cases given in
Fig. 6. Shaded areas correspond to one standard deviation about the time-
averaged spectra and the dashed vertical lines mark the location of the peak.
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APPENDIX A: KINETIC ENERGY LENGTH-SCALE

We compute the dominant scale of convection as the peak of the
time-averaged poloidal kinetic energy spectra (Schwaiger et al. 2019,
2021), defined as

ℓpeak = argmax(𝐸𝐾,𝑃 (ℓ)). (A1)

Figure A1 shows examples of poloidal kinetic energy spectra for one
dipolar case (red line) and one multipolar case (purple line). The
degree at which the spectra is maximum, ℓpeak, is indicated by a
dashed vertical line. These reference dipole and multipole models
feature convective flows with similar dominant length scale. Consid-
ering the entire set of simulations, we find ℓpeak ranging from 14 to
45 with a median value of 30.
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Figure B1. Dipolarity (black line) and tilt angle of the total dipole (purple
line) as a function of time (given in units of magnetic diffusion time 𝜏𝜆). The
top plot corresponds to the simulation FC10 and the bottom one to FC11. The
vertical blue line indicates the initial time used to compute the time-averaged
dipolarity in the top panel. For illustrative purposes only the time-averaged
window is shown in the bottom plot.

APPENDIX B: AVERAGING STRATEGY

Figure B1 illustrates the time dependence of the dipolarity (Eq. 12)
and the dipole tilt angle (𝜃dip) for two simulations with 𝑁𝜌 = 1.5 in
our sample. The simulation FC10 (top panel) shows an axial-dipole
that is anti-aligned with the rotation axis (𝜃dip ∼ 180◦) and whose
field strength is stable through out the time span of the simulation.
For this simulation, we find 𝑓dip = 0.62 ± 0.04 when using an av-
eraging interval 𝜏avg that is defined as the difference between the
time at the end of the run (𝜏end) minus a predefined initial time (rep-
resented by the blue dashed line in top plot). The bottom panel of
Figure B1 corresponds to the simulation FC11. The evolution of 𝜃dip
evidences a reversing dipole with periodic switches in polarity that
occur at irregular intervals of time. We find 𝑓dip = 0.41± 0.12 when
considering a large number of reversals to compute the time average
(achieved after setting 𝜏avg = 2.5𝜏𝜆).
We remind the reader that all of our simulations were initialized

with a dipole of strengthΛ = 0.44 and the solutions we obtained may
depend on the initial conditions.

APPENDIX C: FLOW CONFIGURATION

It was proposed in the literature that the dipole collapse is directly
linked to a arrangement in the convective flow. Two main quantities
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Figure C1.Dipolarity as a function of the flow columnarity (top) and relative
axial helicity (bottom). Symbols are defined as in Fig. 5.

characterising the structure of convective flows in the simulations
were explored:

(i) the columnarity C𝜔z which offers a quantitative way to define
columnar flows and is expressed by

C𝜔z =

∑
𝑠,𝜙

����〈 ®𝜔′ · êz
〉
𝑧

����∑
𝑠,𝜙

〈��� ®𝜔′
���〉
𝑧

, (C1)

where ®𝜔′ is the vorticity generated by the non-axisymmetric velocity
field (Soderlund et al. 2012). The summation occurs in the equatorial
plane and 〈·〉𝑧 represents an average in the axial direction êz;
(ii) the relative axial helicity of the flow

��H relz �� computed as the
average of the absolute contribution from the Northern and Southern
hemispheres:

��H relz �� = (��H relz NH�� + ��H relz SH��)/2, where each hemi-
spheric contribution is given by

H relz NH/SH =
〈𝑢𝑧𝜔𝑧〉NH/SH√︃〈

𝑢2𝑧
〉
NH/SH

〈
𝜔2𝑧

〉
NH/SH

. (C2)

The top panel of Fig. C1 shows 𝑓dip as a function of C𝜔z for
our data set. The overall result shows a homogeneous distribution
of dipole-dominated and complex multipolar surface fields for the
explored range of C𝜔z (going from 0.4 to 1). It also evidences the
lack of correlation between 𝑓dip and C𝜔z. A possible explanation
for this might be the high values of columnarity attained in this
work. Prior Boussinesq simulations of Soderlund et al. (2012) found
that columnar flows with C𝜔z > 0.5 can generate either dipolar

or multipolar surface magnetic fields, while flows with C𝜔z . 0.5
only results in multipolar fields. Indeed if we restrain ourselves to
the runs with columnarity around the threshold of 0.5, we identify
three runs FC08, FC15, and FC23, giving hints of a transition to
a multipolar branch (all three with 𝑓dip < 0.25). Nevertheless, the
diversity of magnetic field complexities obtained at high–C𝜔z makes
the columnarity a poor proxy to describe the dipolar collapse.
Often associated with the magnetic field amplification in the dy-

namo framework (through the so-called 𝛼–effect), the decrease in
the flow’s relative axial helicity has also been suggested to cause
the dipole breakdown (Soderlund et al. 2012). The bottom panel
of Fig. C1 shows the dependency of

��H relz �� with the different mag-
netic morphologies. The simulations yield weak to moderate relative
helicity values,

��H relz �� < 0.6, that are consistent with the values ob-
tained in previous works (Takahashi 2014; Garcia et al. 2017). It is
apparent from Fig. C1 that the only case displaying 𝑓dip ≈ 0 features
the highest helicity in our sample. On the other hand, the strongest
dipoles possess weak helicity values with

��H relz �� spread around 0.28
(corresponding to five dipolar dynamos obtained for 𝑁𝜌 = 1.0 and
the two strongest dipoles for 𝑁𝜌 = 3.0). These results suggest that
the magnetic morphology is unaffected by

��H relz �� for the parame-
ter space we explored. Although these findings differ from some
published studies (e.g., Soderlund et al. 2012), they are consistent
with mean-field simulations of Livermore et al. (2007) and the 3D
simulations of Browning (2008) mimicking the interior of a fully
convective M dwarf. The likely cause for these differences is that
the mean-helicity becomes a poor approximation for the 𝛼–effect in
some cases (Schrinner et al. 2007; Warnecke et al. 2018).
These results corroborate earlier suggestions of Garcia et al.

(2017), who argued that hydrodynamic transitions in the flow (e.g.
measured by C𝜔z or H relz ) would only capture the dipole collapse
in systems where the Lorentz force plays a minor role in the flow
dynamics.
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